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Summary

In this paper, we incorporate an autoregressive time-series framework into models for
animal survival using capture-recapture data. Researchers modelling animal survival
probabilities as the realization of a random process have typically considered survival
to be independent from one time period to the next. This may not be realistic for some
populations. Using a Gibbs sampling approach we can estimate covariate coefficients
and autoregressive parameters for survival models. The procedure is illustrated with a
waterfowl band recovery dataset on Northern Pintails (Anas acuta). The analysis shows
that the second lag autoregressive coefficient is significantly less than 0, suggesting
that there is a triennial relationship between survival probabilities and emphasizing
that modelling survival rates as independent random variables may be unrealistic in
some cases. Software to implement the methodology is available at no charge on the
internet.

Key words: Autoregressive models; Bayesian inference; MCMC; Survival
estimation; winBUGS.

1 Introduction

The investigation of factors that affect animal survival has become an increasingly important

aspect of ecological research (Lebreton et al., 1992). It is often of interest to account for

survival rates with covariates such as age, time, or weather factors (Buckland et al., 2000).

Researchers have recently begun to explore the view that survival probabilities are realiza-

tions of a random process rather than fixed constants (Barry et al., 2001; Burnham, 2000;

Burnham and White, 2002). Modeling survival probabilities via random effects allows one to

account for over-dispersion (Barry et al., 2001) and unobserved (or random) environmental
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factors (Burnham, 2000). To this point, however, realizations of the survival process have

been considered to be independent from one time period to the next. In some situations,

this may be an unrealistic assumption. For example, survival at weekly intervals over the

course of one season would likely be correlated, or high survival in one period may lead to

low survival in following periods due to lack of resources. Therefore, it is reasonable to con-

sider a time series correlation structure, such as an autoregressive structure (AR), in models

where survival is considered a random process.

Vounatsou and Smith (1995), Brooks et al. (2000a; 2000b), and Poole and Zeh (2002)

have used Bayesian methods to estimate individual survival rates. Recently, Brooks et al.

(2002) and Barry et al. (2001) have used Bayesian methods to estimate survival models

with independent random effects as a way to model overdispersion. Burnham (2000) and

Burnham and White (2002) have considered random effects in a non-Bayesian framework.

Estimation via maximum likelihood is difficult in the context of random effects models. The

likelihood is constructed by integrating over the random effects, and thus, an integration

must be performed over all of the random effects included in the model for each iteration of

an optimization algorithm. This same difficulty is encountered in generalized linear models

(Zeger and Karim, 1991).

The use of random effects allows for modeling survival in a capture-recapture model via an

AR process. The Bayesian paradigm provides several advantages over maximum likelihood

estimation. Using Markov Chain Monte Carlo (MCMC) procedures (Robert and Casella,

1999), point estimates can be produced by sampling from the posterior distribution of the

parameters. In addition, Bayesian methods allow for estimation of the unobserved random

effects as well. For example, survival probabilities can be estimated for each individual time

period. This is not feasible with maximum likelihood estimation procedures when random

effects are included.

We consider models for two common types of capture-recapture data: open population

mark recapture (MR), where animals are recaptured and released alive, and band return

(BR), where animals are recovered dead after each hunting season. For each of these data

types we develop the theoretical construction and estimation procedures for a mth order

autoregressive, AR(m), random effects model using a Bayesian approach. The Bayesian
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analysis is illustrated using a long term waterfowl band recovery data set for Northern

Pintails (Anas acuta).

2 Likelihood for Capture-Recapture Data

The likelihoods for open population mark-recapture (MR) data and band recovery (BR)

data are structurally identical, the only major difference being a slight modification of the

parameters. A complete description of the likelihood for capture-recapture data is given in

Lebreton et al. (1992) and Brownie et al. (1985). We give a brief description here for the

Bayesian methods presented in the next section.

Data are typically observed as an upper triangular array, m, where the i, jth element,

mij, is the number of animals released at time ti and subsequently recaptured (or reported,

in the case of BR models) at time tj (see Table 1, for example). The value I represents

the number of capture occasions in which marking or banding is performed and J is the

number of occasions in which recording recaptures or recoveries occurs. In MR studies,

typically, J = I, while for BR studies, J may be greater than I due to the fact that marked

animals may be harvested and reported after marking has stopped. Another component of

the data is the I × 1 vector R = [Ri], which contains the number of marked, or banded,

animals released at each capture occasion. Each row of m is then modelled as a multinomial

random variable with Ri trials and cell probabilities determined by survival probabilities

and recapture or recovery probabilities. When using capture histories summarized into

the sufficient statistics m and R, the assumption that individuals have identical survival

probabilities and recapture/recovery rates is assumed.

2.1 Open population mark-recapture likelihood

The MR model for survival estimation is also referred to as the Cormack-Jolly-Seber

model (Cormack, 1964). This model is designed for studies in which a captured animal is

labelled with a unique marking and released back into the wild population. At some point

in the future, the marked animal may be recaptured, recorded, and released once again into

the population. In MR studies, the first possible recapture of an animal marked at ti is ti+1,

therefore, for these models i = 1, . . . , I and j = i+1, . . . , J +1. Under the assumptions that

individuals are independent and capture does not affect survival or recapture probabilities,
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the resulting product multinomial likelihood is

L(φ,p;R,m) =
I∏

i=1

(
Ri

mi,i+1, . . . , mi,J+1, vi

)
ξvi
i

J+1∏
j=i+1

{
φipj

j−1∏

k=i+1

φk(1− pk)

}mij

, (1)

where, φi is the probability that an animal survives from capture occasion ti to ti+1, i =

1, . . . , I given that it is alive at ti, and pj, is the probability that an animal alive at tj,

j = 2, . . . , J + 1, is captured at tj. The probability that an animal is never recaptured after

release at ti is given by

ξi = 1−
J+1∑

j=i+1

φipj

j−1∏

k=i+1

φk(1− pk)

and vi = Ri −
∑J+1

j=i+1 mij is the number of animals captured at ti and never subsequently

recaptured during the study. In this section and for the remainder of this paper, a reverse

order product is set equal to 1. For example, if j = i + 1, then
∏j−1

k=i+1 φk(1− pk) = 1.

2.2 Band recovery likelihood

Band recovery models are designed for studies in which animals are captured, marked

and released. Animals are then reported to the banding agency after harvesting by hunters.

Therefore, at “recapture” occasions, the marked animals are removed from the population.

The structure of the data remains in the R, m format, so, the form of the likelihood is the

same as (1), the only modifications being a change in the cell probabilities of the multinomial

distribution and ranges for the i, j indices. Since an animal can be harvested and reported

in the same time period in which it was banded, the index ranges are set at i = 1, . . . , I and

j = i, . . . , J . The resulting likelihood is

L(φ,λ;R,m) =
I∏

i=1

(
Ri

mii, . . . ,miJ

)
ξvi
i

J∏
j=i

{
λj

j−1∏

k=i

φk

}mij

, (2)

where λj is the probability that a marked animal, alive at tj, is harvested between time tj and

tj+1 and reported to the banding agency. In the band recovery model ξi = 1−∑J
j=i λj

∏j−1
k=i φk

and vi = Ri −
∑J

j=i mij. Notice, in the BR model, that since an animal can be reported in

the same time period as marking, the i, i cell probabilities involve only the λi parameter.

Therefore, there are only J − 1 survival probabilities even though there are J years of data.
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3 A Bayesian Approach for AR(m) Survival Models

3.1 Model specification

We consider a generalized linear model for the probability that an animal survives from

time tj to time tj+1 of the form

g(φj) = X′
jβ + εj, j = 1, . . . , J, (3)

where g is an appropriate link function to constrain survival between 0 and 1, Xj is a

P × 1 matrix of covariates collected at capture occasion j, β is a P × 1 vector of regression

coefficients, and ε = (ε1, . . . , εJ)′ ∼ N(0,Σ). The covariance matrix, Σ, can be any general

form. Here we consider an AR(m) model which implies that the εj error terms are realizations

from the stochastic process

εj =
m∑

k=1

ρkεj−k + zj, j = 1, . . . , J, (4)

where zj ∼ i.i.d. N(0, σ2) and ρ = (ρ1, . . . , ρm) is a set of parameters.

We assume the process represented by (4) is stationary. For this model, stationarity

implies that the covariance between two survival probabilities is a decreasing function of the

distance between two time points and is independent of any one time point. The station-

arity assumption of the error process imposes a constraint on ρ such that the roots of the

characteristic equation,

xm − ρ1x
m−1 − · · · − ρm = 0,

must be less than 1 in absolute value (Harvey, 1993, pg 20). In terms of the parameters, an

AR(1) process is stationary if |ρ| < 1, while, an AR(2) process is stationary if |ρ1| < 2 and

1 < ρ2 < 1− |ρ1|.
By including random error terms in (3), we account for unknown environmental influences

that might affect the probability of survival. Without the addition of the error terms, it is

assumed that the covariates completely determine survival. Allowing for correlation between

the random error terms in (4) provides the added complexity that unknown environmental

conditions may be similar for capture periods close together in time, so, survival probabilities

should also be related. Negative values for some elements of ρ might imply some density
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dependent effects in the population. A year in which survival is above average may lead to

a below average survival rates in the subsequent years due to lack of resources.

A stationary AR(m) model provides either positive or negative correlation between sur-

vival probabilities that decreases with an increasing separation in time. So, the AR(m) model

provides the type of relationship between survival probabilities that is desired. In addition,

the model is relatively straightforward. Lindsey (1999, pg 106) notes that for short repeated

measurement studies, elaborate time-series modeling is not necessary or possible and a sim-

ple AR process is usually adequate. The vast majority of capture-recapture datasets are no

more than 50 years long (Franklin et al., 2002). Therefore, capture-recapture data certainly

fit into the category of short time series data.

The model specified in (3) is one where the time series component appears in the error

term. In other AR model formulations, the time series component appears with the mean

term (Lindsey, 1999). However, we prefer model (3) for ease of biological interpretation.

Often, the goal is to determine what covariates best model survival probability. If all of the

variation in survival probability is not accounted for with the covariates sampled, only then

would it be advisable to determine what associations exist between survival probabilities

and different time periods.

3.2 Bayesian parameter estimation

We adopt a Bayesian approach for estimating the parameters for an AR(m) capture-

recapture models specified in Section 3.1. The goal of this approach is to estimate the

posterior distribution of the parameters to make inference about the parameters and eco-

logical hypotheses. This approach is relatively simple in comparison to maximum likelihood

estimation (MLE). To estimate the parameters via MLE, it is necessary to evaluate the

integrated likelihood of the form

L(φ, ·, σ2,ρ;R,m) =

∫

�
L(φ, ·;R,m)N(ε;0,Σ)dε

where, L(·) is given by (1) or (2) and N(·) follows from (3) and (4). Therefore, for each step in

an optimization algorithm a high dimensional integration must be performed. An alternative

approach, quasi-likelihood (McCullagh, 1983), has been developed for random effects models

in the generalized linear model setting. This approach involves the development of estimating
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equations that behave like likelihood functions and hence often have the same properties. In

the capture-recapture setting, however, the fact that the cell probabilities are functions of

the survival probabilities makes quasi-likelihood estimation difficult as well. In the Bayesian

paradigm, the unobserved random effects are treated as random variables along with the

parameters and the integration is performed stochastically through a Markov chain which

samples from the joint conditional distribution of the parameters and the random effects

given the data. From this joint conditional distribution we can obtain point estimates and

confidence intervals for the parameters of the model.

In what follow, we present a general estimation procedure for both mark recapture and

band recovery data. To simplify notation, we will use the notation r to represent either the

vector of capture probabilities, p, or band return rates, λ, depending on the type of data

being considered. We will also use the j index range 1, . . . , J for both MR and BR data as

this will not change the estimation procedure. The observed data, m and R, as well as the

covariates, X, will collectively be denoted by D.

We assume that the parameters β, σ2, ρ, and r are independent a priori. The posterior

distribution of the parameters and random effects is then given by

π(β, σ2, ρ, ε, r|D) ∝ L(β, ε, r; D)× |Σ|−1/2 exp
{−ε′Σ−1ε/2

}
(5)

× π(β)π(σ2)π(ρ)π(r).

In order to draw a sample from this distribution we will make use of the Gibbs sampler (e.g.

Section 2.1 of Chen et al. 2000), which requires the full conditional distributions for each of

the parameters. A sample from the joint posterior distribution can be drawn by successively

drawing from the full conditional posterior distributions for each of the parameters.

A simplification of the full conditional distributions results from the fact that the likeli-

hood function can be broken into three parts. In addition, since the posterior is only defined

up to a multiplicative constant, we can ignore the multinomial coefficients. Therefore, the

likelihood can be rewritten as

L(β, ε, r; D) ∝ V × Lφ × Lr,
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where for both MR and BR data, V =
∏I

i=1 ξvi
i . For MR data

Lφ =
I∏

i=1

J+1∏
j=i+1

(
φi

j−1∏

k=i+1

φk

)mij

and

Lr =
I∏

i=1

J+1∏
j=i+1

{
pj

j−1∏

k=i+1

(1− pk)

}mij

,

and for BR data

Lφ =
I∏

i=1

J∏
j=i

{
j−1∏

k=i+1

φk

}mij

and

Lr =
I∏

i=1

J∏
j=i+1

λ
mij

j .

Now, with the partitioned form of the likelihood we can simplify the full conditional

distributions for each of the parameters. Due to the fact that all but one parameter has a

nonstandard distribution, we will only give the conditional distributions up to a proportional

constant.

If the regression parameters for the covariates, β, in (3) are independent a priori, then

the full conditional of the coefficient for the lth covariate, βl is given by

f(βl|β−l, σ
2,ρ, ε, r, D) = f(βl|β−l, ε, r, D) ∝ V · Lφ · π(βl) l = 1, . . . , P.

Likewise, independent priors for the components of r, the vector of capture probabilities for

MR data or band return rates for BR data, give

f(rl|r−l,β, ε, σ2, ρ, D) = f(rl|r−l,β, ε, D) ∝ V · Lr · π(rl) l = 1, . . . , J.

When deriving the full conditional distribution of εl, we first note, given that we are

assuming stationarity, that we can rewrite the joint distribution of the error terms in (3) in

the form

f(ε|σ2,ρ) = f(ε1)
∏J

l=2 f(εl|ε1, . . . , εl−1)

=
∏J

l=1 N(νl, σ2Kl),
(6)
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where νl = E[εl|ε1, . . . , εl−1], l = 2, . . . , m and Kl is a function of ρ (Harvey, 1993, pg 53). In

a stationary AR(m) process ν1 = 0 and (νl, Kl) = (
∑m

k=1 ρkεl−k, 1) for l = m + 1, . . . , J . In

order to find the remaining ν’s and K’s one can make use of the Durbin-Levinson algorithm

(Brockwell and Davis, 1996, pg 67). In the case of an AR(2) process, for example,

K1 = (1− ρ2)/[(1 + ρ2){(1− ρ2)
2 − ρ2

1}]−1,

K2 = (1− ρ2
2)
−1,

and

ν2 = ρ1/(1− ρ2).

(7)

For an AR(1) process simply set ρ2 = 0 in (7).

It is immediately apparent, due to the fact that an AR(m) process is a Markov process,

that each component of ε is dependent only on its m nearest neighbors. Using this fact,

the full conditional distribution of εl for the Gibbs sampler can be written as a function of

the conditional normal distribution of εl given its m nearest neighbors. Therefore, the full

conditional distribution for εl, l = 1, . . . , J , is

f(εl|ε−l,β, σ2,ρ, r, D) ∝ V · Lφ ·
∏l+min{m, J−l}

j=l N(νj, σ2Kj),

which, for each εl, can be condensed to the following form,

f(εl|ε−l, β, σ2,ρ, r, D) ∝ V · Lφ ·N
(
µl/ηl, σ2/ηl

)
,

by completing the square. For an AR(2) error process

µl =





ρ1ε2 + ρ2ε3 l = 1

ρ1(ε1 + ε3) + ρ2(ε4 − ρ1ε3) l = 2

ρ1(1− ρ2)(εl−1 + εl+1) + ρ2(εl−2 + εl+2) l = 3, . . . , J − 2

ρ1(εJ + εJ−2) + ρ2(εJ−3 − ρ1εJ) l = J − 1

ρ1εJ−1 + ρ2εJ−2 l = J

and

ηl =





1 l = 1 and J

1 + ρ2
1 l = 2 and J − 1

1 + ρ2
1 + ρ2

2 l = 3, . . . , J − 2

.
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Once again, in order to obtain the full conditionals in the case of an AR(1) model, simply

set ρ2 = 0.

Due to the stationarity constraint on the autocorrelation parameters, ρ, we must con-

sider the joint full conditional distribution of ρ instead of assuming independent priors on

the components of ρ. Using the decomposition of f(ε|σ2,ρ) in (6), we can write the full

conditional distribution of ρ as

f(ρ|β, ε, σ2, r, D) = f(ρ|ε, σ2) ∝
(

m∏
j=1

Kj

)−1

exp

{
− 1

2σ2

J∑
j=1

(εj − νj)
2/Kj

}
π(ρ).

The full conditional distribution of σ2 is nearly identical to that of ρ. Using the decom-

position of f(ε|σ2,ρ), the full conditional of σ2 is

f(σ2|β, ε, ρ, r, D) = f(σ2|ε, ρ) ∝ σ−J exp

{
− 1

2σ2

J∑
j=1

(εj − νj)
2/Kj

}
π(σ2),

which is the form of an inverse gamma distribution with shape and scale parameters J/2+1

and C(ε, ρ)/2 =
∑J

j=1(εj − νj)
2/2Kj, respectively. Therefore, if π(σ2) is an inverse gamma

distribution with parameters a0 and b0, Γ−1(a0, b0), then the resulting conditional is an

inverse gamma distribution with parameters J/2 + a0 + 1 and C(ε,ρ)/2 + b0. The full

conditional of σ2 is the only standard density.

When implementing Bayesian methodology, it is necessary to choose priors for the pa-

rameters. It is a standard practice in generalized linear models with random effects to assign

the vague priors π(βl) = N(0, 1/τ) for l = 1, . . . , P and π(σ2) = Γ−1(ε, ε) where τ and ε

are small (Dey et al., 2000, pg 400). In past Bayesian capture-recapture analyses, π(rl) has

been chosen to be a beta distribution for l = 1, . . . , J (Brooks et al., 2000a) of which the

uniform distribution is a special case for vague prior information. All of these priors can be

easily modified to produce informative priors as desired.

When there is little or no prior information concerning the parameter ρ, a uniform distri-

bution on the region of stationarity would be the obvious choice for a noninformative prior

distribution. This uniform distribution, however, may produce marginal priors which are

not as vague as the researcher would like. In the AR(2) case for example, a uniform distri-

bution for the AR parameters ρ1 and ρ2 over the region of stationarity produces marginal
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distributions which are not uniform. In addition, a majority of the mass for the marginal

distribution of ρ2 will be located over negative values, producing a prior mean which is

negative. This problem can often occur when building priors for parameter vectors over a

constrained space. Barnard, McCulloch, and Meng (2000) illustrate the same dilemma when

constructing priors for positive-definite covariance matrices.

In previous analyses using AR processes, the prior for the AR parameters was taken to be

uniform over the stationary space of the parameters or a normal distribution if stationarity

was not a concern or possibility (Huerta and West, 1999). Informative priors can also be

constructed by truncating a multivariate normal to the stationary space. There is another

approach, suggested by Sun and Berger (1998), that is useful for constrained parameter

spaces. If we are concerned with the parameter vector (θ1, θ2), then a prior can be built in

the form π(θ1)π(θ2|θ1). Using this method, we can often build a sufficiently noninformative

prior that has better marginal properties. For example, in the AR(2) model, if we take

π(ρ2) = U(−1, 1) and π(ρ1|ρ2) = U(−(1− ρ2), 1− ρ2), we obtain a prior that approximates

a joint uniform with marginal distributions centered on 0. The partial information approach

can also be used to specify informative priors for some of the AR parameters, while leaving

others vague.

Another practical aspect for the Bayesian analysis of AR(m) capture-recapture models

is that a modified Gibbs sampler must be used due to the non-standard conditional distri-

butions. In the following example, a Metropolis within Gibbs sampler (Gelman and Rubin,

1993) was used. Instead of successively sampling from the full conditional distributions

to obtain a sample from the joint posterior, an observation is first drawn from a proposal

distribution and then either accepted or rejected with a given probability.

4 Example: Northern Pintails

In order to illustrate the fitting of an AR(m) model to capture-recapture data we applied

the Gibbs sampler methodology to a Northern Pintail band recovery data set for females

in California. These data (Table 1) were first analyzed by Franklin et al. (2002) as part

of a meta-analysis on long-term trends in avian survival for many North American bird

species. The previous analysis was performed using a linear trend model, an identity link
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function, and independent yearly random effects. The trend parameters as well as the

variance component were estimated using the shrinkage estimation method of Burnham

(2000). The slope estimate from the previous analysis is 0.0023 with an estimated standard

error of 0.0051. The variance component is estimated to be 0.212.

The previous analyses detected no significant trend to survival probabilities over time.

We will include a slope parameter in this example, however, as an illustration of the use of

covariates in our estimation procedure. Therefore, we will use the model

logit φj = β0 + β1(j − 14) + εj j = 1, . . . , 27 (8)

to illustrate the application of an AR(m) model. In this example, the covariate vector X′
j

in (3) is given by (1, j − 14). The time index is centered to reduce correlation of the β1

sample with the β0 sample, which leads to better exploration of the posterior density for

each variable. In addition, since there seems to be no significant trend based on the previous

analysis, we also analyzed the data without a slope parameter.

We chose to estimate separate reporting probabilities, λj’s, for each year. Barry et al.

(2001) note that separate λj’s in (2) tend to confound the effects of a random survival process

and this has been our experience as well. However, we have adopted a conservative strategy

for making inference about a random survival process, by allowing for fluctuating reporting

rates.

For this example, we have chosen the fit an AR(2) model to the data. This implies that

the error terms in (8) follow the stochastic process

εj = ρ1εj−1 + ρ2εj−2 + zj, j = 1, . . . , 27

The second order AR model was chosen based on a correlogram of the maximum likelihood

estimates, using (2), of yearly survival probabilities from the program MARK (White and

Burnham, 1999). By examining the correlogram we are treating the MLE survival estimates

as time series data instead of estimates of time series data. So, if there is insignificant

correlation at certain lags, it is likely that the corresponding AR coefficients will also be

insignificant when they are simultaneously estimated with the covariate parameters.

The logit link function was chosen due to the fact that it is the most commonly used

link in capture-recapture models. Capture-recapture data usually are not detailed enough
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Table 1

Northern Pintail recovery data for banding years 1955 - 1983. The Ri represent the number

of banded ducks released each year. Birds were banded in January of each Banding Year

Banding Year of Recovery
Year Ri 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
55 270 7 6 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 693 21 10 4 2 3 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
57 1612 32 20 8 5 1 2 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
58 858 26 12 5 6 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
59 1471 21 18 6 5 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
60 1051 18 4 6 4 1 2 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
61 796 24 6 4 0 3 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
62 277 10 9 6 6 4 1 2 4 2 0 0 0 0 0 0 0 0 0 0 0 0
63 903 15 8 1 8 4 0 2 1 1 1 0 0 0 0 0 0 0 0 0 0
64 621 6 4 1 6 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
65 584 10 4 3 7 3 1 2 1 0 0 0 0 0 0 0 0 0 0
66 822 25 6 10 4 4 2 0 0 2 0 0 1 0 0 0 0 0
67 1344 28 27 8 11 3 1 4 1 2 0 0 1 0 0 0 0
68 566 10 13 6 2 2 1 1 1 1 0 0 0 0 0 0
69 481 9 7 3 2 0 1 0 0 0 0 0 0 0 0
70 695 11 11 5 2 2 1 1 0 1 1 0 0 0
71 632 22 10 2 4 0 1 2 0 0 0 0 0
72 1114 21 11 8 3 5 3 2 1 0 0 0
73 639 9 10 10 2 3 0 2 0 0 0
74 926 16 9 9 2 5 1 2 1 0
75 858 14 12 3 5 1 1 1 0
76 369 13 2 4 4 1 1 0
77 450 8 3 4 1 2 1
78 212 6 0 0 1 0
79 1680 18 28 8 4
80 421 14 1 2
81 118 2 0
82 60 1
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to detect subtle differences in the shape of the link used to constrain the survival probability

to (0, 1). Even in the logistic regression scenario, it is often hard to distinguish between

different link functions. For probabilities in the range 0.1 to 0.9, McCullagh and Nelder

(1989, pg 109) note that it is difficult to discriminate between probit and logit links based

on goodness-of-fit tests and for probabilities near 0.5, all four of the common links for binary

data are close to one another. Survival probabilities are usually not near the extremes of 0

or 1 for North American duck species, so, it is reasonable to use the logit link function for

these data.

The Bayesian software winBUGS (Spiegelhalter et al., 2000) was used to select the MCMC

sample from the posterior distribution of (β0, ρ1, ρ2, σ, ε). As was mentioned previously, there

is only one parameter in which the full conditional is a standard density, therefore, a hybrid

Gibbs sampler must be used. To accomplish this, winBUGS uses a Metropolis within Gibbs

sampler where the proposal distribution is a normal distribution in which the variance adapts

over the first 4,000 iterations to obtain an acceptance rate between 20% and 40%.

The priors chosen for the parameters were as follows:

(β0, β1)
T ∼ N(0, 1/0.01 I), σ−2 ∼ Γ(0.001, 0.001),

ρ2 ∼ U(−1, 1), ρ1|ρ2 ∼ U(−(1− ρ2), 1− ρ2), and

λj ∼ i.i.d. U(0, 1) j = 1, . . . , 28.

These values were chosen to be sufficiently vague in order to induce little prior knowledge.

The joint distribution of ρ1 and ρ2 was constructed to be a vague density over the region of

stationarity with mean (0,0). A vague gamma distribution was chosen for σ−2 in order to

take advantage of the standard full conditional distribution of σ2.

In order to select the sample, two independent chains of 15,000 iterations each were run

following a burn-in period of 5,000 iterations to allow the normal proposal distribution to

finish adapting. The chains appeared to have converged well before the end of the burn-in

period. Figure 1 shows gaussian kernel density estimates of the marginal posterior distribu-

tions for each of the parameters. These results suggest that, although the posterior density

of ρ1 seems to be centered directly over 0, the majority of the posterior mass for ρ2 seems to

be located over negative values indicating that there seems to be a significant influence on

the error terms at the second lag. This suggests that if survival is high in one year, it will
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Table 2

Posterior means, standard deviations, and 90% highest probability density (HPD)

intervals for the AR(2) model parameters.

Model Parameter Mean St. Dev. 90% HPD∗ Interval

Intercept and slope β0 0.600 0.159 (0.390, 0.850)

β1 -0.007 0.026 (-0.046, 0.033)

ρ1 0.014 0.288 (-0.458, 0.485)

ρ2 -0.452 0.307 (-0.928, 0.004)

σ 0.688 0.222 (0.336, 1.015)

Intercept only β0 0.612 0.140 (0.409, 0.857)

ρ1 0.014 0.288 (-0.483, 0.456)

ρ2 -0.452 0.307 (-0.918, -0.109)

σ 0.644 0.201 (0.330, 0.950)

∗ Estimated according to the algorithm presented by Chen et al. (2000).

be low in 2 years (lag 2). In addition, the posterior mass of σ seems to be located well away

from 0, indicating that there is also a significant amount of random variation from year to

year. The intercept parameter β0 is also significantly greater than 0, which increases survival

above approximately 0.5 on average. The posterior distribution of the slope parameter, β1

appears to be highly concentrated near 0. While not directly comparable, the trend parame-

ters and variance component are in qualitative agreement with the previous analysis. Figure

1 also illustrates the robustness of the marginal parameters to the presence or absence of

the slope parameter. The marginal density estimates remain virtually unchanged. Posterior

means, standard deviations, and 90% highest probability density (HPD) interval estimates

are given in Table 2. The confidence intervals and approximate expected values support the

conclusions that there exists a significant amount of variation not explained by the linear

trend. There is also a high posterior probability that the slope parameter is approximately

0 and the second AR parameter is less than 0. In addition, since we have simulated values

of ε as well, we can estimate yearly survival as well. Figure 2 shows a plot of yearly survival

with a 90% HPD confidence interval band for the intercept-only model.

The posterior densities remained virtually unchanged when the prior for the AR param-

eters is given by ρ1 ∼ U(−2, 2) and ρ2|ρ1 ∼ U(−1, 1− |ρ1|) as opposed to the priors used
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previously. For these priors, the parameter estimates and corresponding 90% HPD inter-

vals for the intercept-only model were β0: 0.606 (0.395, 0.811), ρ1: 0.018 (-0.505, 0.516),

ρ2: -0.544 (-0.915, -0.185), σ: 0.617 (0.299, 0.921). The posterior distributions of the AR

parameters seem to be robust to different noninformative priors.

5 Discussion

Software to implement the methodology described here for an AR(2) band recovery model is

available at no charge at www.stat.colostate.edu/∼jah/. It is relatively straightforward

to modify and implement this software for specific problems. The software is written in

winBUGS, software for the Bayesian analysis of statistical models using Markov chain Monte

Carlo methods, which is available at no charge at www.mrc-bsu.cam.ac.uk/bugs.

Bayesian methodology allows for time-series modeling of capture-recapture data not pre-

viously available. In addition to the univariate time-series models considered here, the

random effects models could also be expanded to allow for other forms of dependence. For

example, it might be of interest to model recapture or recovery rates with AR random ef-

fects. In that case, the recovery or recapture parameters are treated the same as the survival

procedures presented. Another example is the consideration of gender in survival models.

Common practice is to include gender as a covariate. In an AR model, this would imply

that unknown environmental factors have the same effect on survival of males and females

in each year and the level of association of survival across time remains the same between

males and females as well. This may be an unrealistic assumption, so, it might be wise to

model separate AR errors for males and females. To account for correlated errors between

sexes, a multivariate AR process could be used with very little modification to the models

proposed here.

Even though AR models can provide additional insight to the survival process, there are

situations where estimation of the AR parameters may prove difficult. First, if there is fewer

than 20 capture occasions in the data, there may not be enough data to greatly alter the

prior distributions of the AR parameters. This is a problem often encountered in time series

analysis. Secondly, if the recovery/recapture rates are very small there may be insufficient

data to estimate AR parameters as well as covariate parameters. This second problem is
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common to all capture-recapture data analysis. Finally, if there is very little error variation,

an AR model is unlikely to provide any additional information. This last situation is really

not a problem though, since a biologist’s goal is usually to model survival with covariates.

If all of the error in the survival process is accounted for, one can be confident of having a

good description of the survival process. The AR models are implemented to account for

unobserved environmental variation.

Some implications of using AR models with capture-recapture data is that the estimate

of survival for any time period will have larger uncertainty than the simple covariate model.

This variability is controlled by both variability of the white noise term in (4) and the

AR parameters. For example, for an AR(1) model each random effect has a variance of

σ2/(1−ρ2). For σ held fixed, the variance of the random effect can get vary large as |ρ| → 1.

One can also observe, that for a fixed noise variance, the AR models will have larger variance

than the independent random effects model.

One extension of the methodology described here is model selection. In general, model

section is not an easy task for capture-recapture data in a Bayesian framework. Recently,

King and Brooks (2001a; 2001b) have explored using Reverse Jump MCMC procedures

(Green, 1995) for capture-recapture models with multiple strata and integrated recovery/recapture

models. This provides the most promising solution, but, these procedures are not easily im-

plemented for analysis on a regular basis. Another solution for Bayesian model selection is

the Deviance Information Criterion (DIC) (Spiegelhalter et al., 2001). A nice feature of DIC

is that the MCMC sample selected for parameter estimation can be used to construct a DIC

score. Current formulations of the DIC, however, do not allow for distinguishing between

different order AR processes for the capture-recapture models described here. If one wishes

to fit an AR model to capture-recapture data, an initial step to select an appropriate order

for the AR model is to fit a independent random effect model then plot a correlogram of the

random effect point estimates and choose the order based on the plot. This will provide a

conservative order for the model.

Overall, these models have the potential of providing wildlife biologists new insights into

factors affecting survival for animals studied via capture-recapture studies.
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Figure 1. Marginal Posterior densities for (a): β0, (b) β1, (c): ρ1, (d): ρ2, and (e): σ from

the Pintail data. The solid lines represent posterior densities from the time trend model,

while the dotted lines represent the posterior densities when the trend parameter is absent.
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Figure 2. Plot of yearly survival estimates for Northern Pintail dataset with no linear time

trend. The solid line is the estimated posterior mean survival and the dashed lines represent

a 90% HPD interval.
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